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Vanishing, regularity, and Fujita-type statements

Joint work with Christian Schnell – arXiv:1405.6125.

X smooth projective variety, dimC X = n; L ample line bundle on X .

Fujita Conjecture: ωX ⊗ L⊗m is globally generated for all m ≥ n + 1.

Known only in dimension up to four (Reider, Ein-Lazarsfeld,
Kawamata), but ok when L is very ample. More generally:

Proposition

f : X → Y morphism of projective varieties, X smooth, dim Y = n.

L ample and globally generated line bundle on Y . Then

R i f∗ωX ⊗ L⊗n+1

is globally generated for all i ≥ 0.
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Vanishing, regularity, and Fujita-type statements

Theorem (Kollár Vanishing)

f : X → Y morphism of projective varieties, X smooth

L ample line bundle on Y . Then

H j(Y ,R i f∗ωX ⊗ L) = 0 for all i and all j > 0.

F ∈ Coh(Y ) is 0-regular w.r.t. L ample and globally generated if

H i (Y ,F ⊗ L⊗−i ) = 0 for all i > 0.

Theorem (Castelnuovo-Mumford Lemma)

F 0-regular sheaf on Y =⇒ F globally generated.

Kollár Vanishing =⇒ R i f∗ωX ⊗ L⊗n+1 is 0-regular.
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Powers of canonical bundles

Question: How about powers ω⊗kX , k ≥ 2?

Motivation: Say X smooth projective, L ample on X
MMP
=⇒

ωX ⊗ L⊗n+1 is nef.

By Kodaira Vanishing, this implies

H i (X , ω⊗kX ⊗ L⊗k(n+1)−n) = 0 for all i > 0.

since

kKX +
(
k(n + 1)− n

)
L = KX + (k − 1)

(
KX + (n + 1)L

)
+ L.

This is the type of effective vanishing statement we would like for
f∗ω
⊗k
X .
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Powers of canonical bundles

How about effective global generation?

Conjecture

f : X → Y morphism of smooth projective varieties, dim Y = n

L ample on Y , k ≥ 1. Then

f∗ω
⊗k
X ⊗ L⊗m

is globally generated for m ≥ k(n + 1).

Would follow immediately from Fujita when f = Id.

When k = 1, proved by Kawamata in dimension up to 4 when the
branch locus of f is an SNC divisor.
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Example: curves

The conjecture holds when Y = C = smooth projective curve; very
special methods though.

Say f : X → C surjective, C of genus g . Write

f∗ω
⊗k
X ⊗ L⊗m ' f∗ω

⊗k
X/C ⊗ ω

⊗k
C ⊗ L⊗m.

The statement follows from the following facts:

Viehweg: f∗ω
⊗k
X/C is a nef vector bundle on C for all k .

Lemma: E nef vector bundle, L line bundle of degree ≥ 2g =⇒
E ⊗ L globally generated.

Uses:

Hartshorne: A vector bundle E on C is nef ⇐⇒ E has no line
bundle quotients of negative degree.
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Extending Kollár’s result when i = 0

Theorem

f : X → Y morphism of projective varieties, X smooth, dim Y = n.

L ample and globally generated line bundle on Y , k ≥ 1. Then

f∗ω
⊗k
X ⊗ L⊗m

is 0-regular, and therefore globally generated, for m ≥ k(n + 1).

Effectivity of the result is crucial in applications; explained later.

Variant

The same holds if f is a fibration (i.e. its fibers are irreducible) and ωX is
replaced by ωX ⊗M, where M is a nef and f -big line bundle.
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Extension to log-canonical pairs

Important (even for the proof) to extend to log-canonical pairs; note
that there exist an extension of Kollár vanishing:

Theorem (Ambro-Fujino Vanishing)

Same setting; let (X ,∆) be a log-canonical pair such that ∆ is a Q-divisor
with SNC support

B line bundle on X such that B ∼Q KX + ∆ + f ∗H, with H ample Q-Cartier
Q-divisor on Y . Then

H j(Y ,R i f∗B) = 0 for all i and all j > 0.

The main technical result is a vanishing theorem partially extending
Ambro-Fujino vanishing in the case i = 0:
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Vanishing for direct images of log-canonical pairs

Theorem

f : X → Y morphism of projective varieties, X normal, dim Y = n.

(X ,∆) log-canonical Q-pair on X .

B line bundle on X such that B ∼Q k(KX + ∆ + f ∗H) for some
k ≥ 1, H ample Q-Cartier Q-divisor on Y .

L ample and globally generated line bundle on Y . Then:

H i (Y , f∗B ⊗ L⊗m) = 0 for all i > 0 and m ≥ (k − 1)(n + 1− t)− t + 1,

where t := sup {s ∈ Q | H − sL is ample}.

Special case: If k(KX + ∆) is Cartier, can take H = L and t = 1, so:

H i (Y , f∗OX

(
k(KX + ∆)

)
⊗ L⊗m) = 0 for m ≥ k(n + 1)− n.
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Main idea

Theorem implies the main global generation result (and an extension
to log-canonical pairs) via 0-regularity.

Idea of proof: a combination of Viehweg-style methods towards weak
positivity and the use of Kollár and Ambro-Fujino vanishing. Recall:

B ∼Q k(KX + ∆ + f ∗H), k ≥ 1, (X ,∆) log-canonical, f : X → Y .

Consider adjunction morphism

f ∗f∗B → B

Log-resolution arguments =⇒ reduce to X smooth, the image is
B ⊗OX (−E ), and E + ∆ divisor with SNC support.

Consider smallest p ≥ 0 such that f∗B ⊗ L⊗p globally generated.
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Main idea

Obtain

B + pf ∗L ∼ k(KX + ∆ + f ∗H) + pf ∗L ∼ D + E

with D smooth and transverse to the support of E + ∆.

Slightly involved reduction leads to

B − E ′ + mf ∗L ∼Q KX + ∆′ + f ∗H ′,

where ∆′ is log-canonical with SNC support, E ′ is contained in the
relative base locus of B, and

H ′ ample ⇐⇒ m + t − k − 1

k
· p > 0.

Ambro-Fujino Vanishing then implies in this range:

H i (Y , f∗B ⊗ L⊗m) = 0 for all i > 0.
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Main idea

Get that f∗B ⊗ L⊗m is 0-regular, hence globally generated, for

m >
k − 1

k
· p − t + n.

But we’ve chosen p minimal with this same property, which then
implies all the effective inequalities we’re looking for:

m ≤ k(n + 1)− n and p ≤ k(n + 1).
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Applications

The effective statements above govern different types of applications:

Vanishing theorems for direct images of pluricanonical bundles.

(Effective) weak positivity, and subadditivity of Iitaka dimension.

Generic vanishing for direct images of pluricanonical bundles.
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Vanishing theorems

We have seen that the key result is a partial extension of
Ambro-Fujino. It implies:

Corollary

f : X → Y morphism of projective varieties, X smooth, dim Y = n

L ample and globally generated on Y , k ≥ 1. Then

H i (Y , f∗ω
⊗k
X ⊗ L⊗m) = 0 for all i > 0 and m ≥ k(n + 1)− n.

Relative Fujita: Case k = 1 of the main conjecture says that
f∗ωX ⊗ L⊗m is globally generated for m ≥ n + 1, L ample.

Corollary

If Relative Fujita holds, then the Corollary above holds with L only
assumed to be ample.
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Weak positivity

Fundamental notion introduced by Viehweg:

Definition: A torsion-free F on X projective is weakly positive on a
non-empty open set U ⊆ X if for every ample A on X and a ∈ N, the
sheaf S [ab]F ⊗ A⊗b is generated by global sections over U for b � 0.
(S [p]F := reflexive hull of SpF .)

Intuition: higher rank generalization of pseudo-effective line bundles;
very roughly, there exists a fixed line bundle A such that F⊗a ⊗ A is
globally generated over a fixed open set U, for all a ≥ 0.

Theorem (Viehweg)

If f : X → Y is a surjective morphism of smooth projective varieties, then
f∗ω
⊗k
X/Y is weakly positive for every k ≥ 1.
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Weak positivity

Case k = 1 typically uses Hodge theory (Fujita, Kawamata) –
however Kollár provided effective version using vanishing theorems.

Results above allow us to do the same for k > 1.

Theorem

f : X → Y surjective “mild” morphism of smooth projective varieties,

L ample and globally generated on Y , A := ωY ⊗ L⊗n+1, s ≥ 1. Then

f∗(ω
⊗k
X/Y )[⊗s] ⊗ A⊗k

is globally generated on fixed open set U containing the smooth locus of f .

Implies Viehweg’s result via semistable reduction.
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Weak positivity

Another advantage: vanishing theorems method extends the picture
to adjoint bundles.

Theorem

f : X → Y fibration between smooth projective varieties, M nef and f -big
line bundle on X =⇒ f∗(ωX/Y ⊗M)⊗k is weakly positive for every k ≥ 1.

An argument of Viehweg then gives the subadditivity of Iitaka
dimension over a base of general type:

Corollary

In the situation of the Theorem, denote by F the general fiber of f , and by
MF the restriction of M to F . If Y is of general type, then

κ(ωX ⊗M) = κ(ωF ⊗MF ) + dim Y .
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Generic vanishing

Definition: A abelian variety, F ∈ Coh(A) =⇒ F is a GV -sheaf if
for all i ≥ 0:

codimPic0(A){α ∈ Pic0(A) | H i (A,F ⊗ α) 6= 0} ≥ i

Generic vanishing theorems address this property, especially for ωX ;
crucial for studying the birational geometry of X with b1(X ) 6= 0.

Green-Lazarsfeld: If f : X → A is generically finite onto its image,
then f∗ωX is a GV -sheaf.

Statement in fact stronger, but anyway generalized as follows:

Hacon: If f : X → A arbitrary morphism, then R i f∗ωX is a GV -sheaf,
for all i .
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Generic vanishing

Theorem

Let f : X → A be a morphism from a smooth projective variety to an
abelian variety. Then f∗ω

⊗k
X is a GV -sheaf for every k ≥ 1.

Idea: Depends on the fact that via pullback by multiplication maps

·m : A −→ A

f∗ω
⊗k
X remains of the same form, while (·m)∗L ≡ L⊗m

2
.

For m� 0, apply the effective vanishing theorems discussed above +
criterion of Hacon.
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Higher direct images?

The original statements for k = 1 (e.g. Kollár or Ambro-Fujino
vanishing, Hacon’s generic vanishing) hold for higher direct images as
well. However, the Viehweg-style methods do not.

Question: Are there analogues of these effective results for R i f∗ω
⊗k
X

with i > 0?

For instance, for all i and k :

Is R i f∗ω
⊗k
X ⊗ Lk(n+1) globally generated?

Is R i f∗ω
⊗k
X a GV -sheaf?

etc...

No obvious reason why these shouldn’t hold, but would require an
interesting new idea!
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Thank you!
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